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Abstract

We consider positive classical solutions of{
−∆u+ λa(x) · ∇u = up in Ω,

u = 0 on ∂Ω,

where p > 1, a is a smooth divergence free vector field and λ > 0
is a large parameter. Under certain assumptions on a(x) and (or)
assumptions on the existence of first integrals of a(x) we show there is
a subsequence of smooth positive solutions which converge to a nonzero
first integral of a(x) as λ→∞.
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1 Introduction

In this work we are interested in examining positive classical solutions of

(Q)λ


−∆u+ λa(x) · ∇u = up in Ω,

u = 0 on ∂Ω,
u > 0 in Ω,

where λ > 0 is a parameter and where Ω is a bounded domain in RN
(N ≥ 2) with smooth boundary. We will assume that a is a smooth and
divergence free vector field. Our main interest will be the asymptotics of
positive solutions as λ→∞.
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1.1 Background

We begin by considering the case of (Q)λ when a = 0. In this case the
equation becomes {

−∆u = up in Ω,
u = 0 on ∂Ω.

(1)

For N ≥ 3 we define the critical exponent ps = N+2
N−2 and note that it is

related to the critical Sobolev imbedding exponent 2∗ := 2N
N−2 = ps + 1.

For 1 < p < ps one has that H1
0 (Ω) is compactly imbedded in Lp+1(Ω) and

hence one can show the existence of a positive minimizer of

min
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|

2dx(∫
Ω |u|p+1dx

) 2
p+1

.

This positive minimizer is a positive solution of (1), see for instance the
book [39]. Note in the case of N = 2 we have the existence of a posi-
tive minimizer for any p > 1. For p ≥ ps, H

1
0 (Ω) is no longer compactly

imbedded in Lp+1(Ω) and so to find positive solutions of (1) one needs to
take other approaches. For p ≥ ps the well known Pohozaev identity [31]
shows there are no positive solutions of (1) provided Ω is star shaped. For
general domains in the critical/supercritical case, p ≥ ps, the existence ver-
sus nonexistence of positive solutions of (1) is a very delicate question; see
[1, 8, 17, 16, 15, 14, 18, 30, 27, 28, 36, 37].

The various critical exponents. In this work a few well known critical
exponents make an appearance; pBT := N+1

N−1 < N
N−2 < ps at least when

N ≥ 3. To give a background we introduce the equation{
−∆u = b(x)up in Ω,

u = 0 on ∂Ω,
(2)

where Ω a bounded domain with smooth boundary in RN (N ≥ 3) and b is
a smooth positive function. For b(x) = b0 > 0 and Ω star shaped we know
there is no positive classical solution for any p ≥ ps as mentioned above.

For general b, in 1977, Brezis and Turner [6] showed that an H1
0 (Ω)

solution is smooth provided 1 < p < pBT the Brezis-Turner exponent. For b
constant this was improved to the full range 1 < p < ps in [22, 13]. In [33] it
was shown that very weak solutions of (2) are smooth provided 1 < p < pBT .
Here we define a very weak solution of (2) by u ∈ L1(Ω) (with some minor
other assumptions) such that∫

Ω
(−∆φ)udx =

∫
Ω
b(x)upφdx, ∀φ ∈ {φ ∈ C2(Ω) : φ = 0 on ∂Ω},
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note this idea of a very weak solution is essentially the same as a distribu-
tional solution but the boundary condition for u has been encoded into the
definition by slightly enlarging the class of test functions.

If one sets u(x) = |x|−α−1 with α = 2
p−1 there is some Cp > 0 such that

u is a very weak solution of −∆u = Cp(u + 1)p in B1 with u = 0 on ∂B1

provided N
N−2 < p < ps. This leaves open the question of whether very weak

solutions of (2) are smooth for pBT < p < N
N−2 . In [38] it was shown that

for all p > pBT there is some bounded positive b and a very weak solution
of (2) which is neither bounded or H1

0 (Ω). This shows the optimality of the
Brezis-Turner exponent.

Adding the advection term. We now return to (Q)λ. For the case of
general a(x) the equation is no longer variational and hence one cannot find
critical points of a suitable energy to find positive solutions of (Q)λ. We
point out the special case of a(x) = ∇γ(x) where γ is a scalar function; in
this case the equation is variational and hence one can find critical points
of a suitable energy. In particular a minimizer of

Eλ(u) :=

∫
Ω e
−λγ |∇u|2dx(∫

Ω e
−λγ |u|p+1dx

) 2
p+1

satisfies (Q)λ.
We now consider the idea of large drift problems. We first mention that

these large drift problems have attracted a lot of attention in the context of
travelling fronts, see for instance [24, 25, 26, 3, 4, 35, 40] and also [5]. Of
key importance to large drift problems is the notion of a first integral which
we now define.

Definition 1. (First integrals) We say ψ ∈ H1
0 (Ω) is a first integral for a

provided ψ 6= 0 and a(x) · ∇ψ(x) = 0 for a.e. x ∈ Ω. We denote the class
of first integrals of a by A. Denote A+ := {ψ ∈ A : ψ ≥ 0 a.e.}.

We mention here a result regarding a linear problem with large advection.
Berestycki, Hamel and Nadirashvili in [3] examined the eigenvalue problem
given by {

−∆φ+ ta(x) · ∇φ = µtφ in Ω,
φ = 0 on ∂Ω,

(3)

where µt denotes the principal eigenvalue and their interest is what happens
when t → ∞. For smooth divergence free vector fields a they showed that
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{µt}t is bounded if and only if a has a first integral in H1
0 (Ω). Moreover, if

a has a first integral in H1
0 (Ω) then

µt → min
w∈A

∫
Ω |∇w|

2∫
Ωw

2
as t→∞, (4)

and the minimum in the right-hand side of (4) is achieved.

We let δ(x) := dist(x, ∂Ω) denote the Euclidean distance from x to ∂Ω.
For ε > 0 small set Ωε := {x ∈ Ω : δ(x) < ε}.

Assumptions on a(x). There are two assumptions we impose on a(x)
that allow us to obtain results. The important issue is whether a(x) has a
first integral with suitable properties. We note this can be quite a complex
issue which we don’t want to address here, the interested reader should see
[24, 25, 26]).

(A1) a is smooth, divergence free and compactly supported in Ω. In this
case one can easily construct a smooth positive first integral ψ with ∆ψ ≥ 0
near ∂Ω (see below how to get this condition on ∆ψ) and ψ ≥ cδ in Ω for
some c > 0.

(A2) a is smooth, divergence free and there exists some smooth ψ ∈ A+

and c1 > 0 such that ψ(x) ≥ c1δ(x) in Ω. Note under this assump-
tion that |∇ψ| is bounded away from zero near ∂Ω. By replacing ψ with
x 7→ m(ψ(x))2 + ψ(x) (for large m) we can assume ∆ψ ≥ 0 near ∂Ω. So in
case (A2) we have the existence of a smooth positive first integral ψ with
∆ψ ≥ 0 near ∂Ω and ψ ≥ cδ in Ω for some c > 0.

Note in both the above cases we can assume there is some C2 > 0 such
that ψ ≤ C2δ in Ω; this follows from the smoothness of ψ. So in both cases
we will assume ψ is comparable to δ. Note also that in (A1) the only real
assumption is on a. In the case of (A2) we are making an assumption on
the existence of positive smooth first integral of a.

Acknowledgments. We would like to thank the anonymous referee for the
detailed report which greatly increased the readability of the work.
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1.2 Main results

Proposition 1. (Existence of positive smooth solution) Assume 1 < p <
N+2
N−2 and a is smooth and bounded. Then there is a smooth positive solution
of (Q)λ. If we further assume divergence of a is zero then there is some
C1 > 0 (independent of λ) such that any positive solution of (Q)λ satisfies
supΩ u ≥ C1.

We now state our mains results in the case of the asymptotics in λ.

Theorem 1. Let a satisfy (A1), ψ is as in condition (A1) and 1 < p < N
N−2 .

Let um denote a sequence of smooth solutions of (Q)λm with λm →∞. Then
there is some Ci > 0 such that 0 < C1 ≤ supΩ um ≤ C2. Moreover we have∫

Ω
(a(x) · ∇um(x))2dx ≤ C

λm
→ 0.

Also there is some u ∈ H1
0\{0} ∩ A+ and some {umk}k such that umk ⇀ u

in H1
0 and umk → u in LT for all T <∞.

Theorem 2. Let a satisfy (A2) and let 1 < p < N+1
N−1 . Let um denote a

sequence of smooth positive solutions of (Q)λm with λm → ∞. Then there
is some Ci > 0 such that 0 < C1 ≤ supΩ um ≤ C2. Moreover we have∫

Ω
(a(x) · ∇um(x))2dx ≤ C

λm
→ 0.

Also there is some u ∈ H1
0\{0} ∩ A+ and some {umk}k such that umk ⇀ u

in H1
0 and umk → u in LT for all T <∞.

Some open problems. It would be interesting to investigate whether these
results should hold for a larger range of p. For instance can one extend
Theorem 1 and (or) 2 to all 1 < p < ps? Can one extend Theorem 2 to all
1 < p < N

N−2? Since one is dealing with smooth solutions the most natural
approach is to try a rescaling/blow up approach; of course λm → ∞ adds
major difficulties to this approach and this is why we took a more integral
estimate approach so the advection term drops out.

2 Proofs

2.1 Existence results for fixed λ

We begin with some lemmas.
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Lemma 1. Let b be a divergence free smooth vector field and v a smooth
positive solution of −∆v + b(x) · ∇v = vp in Ω with v = 0 on ∂Ω. Let

L(φ) := −∆φ+ b(x) · ∇φ− pv(x)p−1φ.

Then λ1(L) < 0 (here λ1(L) is the first eigenvalue of L in H1
0 (Ω)).

Proof. Let L∗ denote the adjoint of L, ie. L∗(ψ) = −∆ψ− b · ∇ψ− pvp−1ψ.
Note that λ1(L) = λ1(L∗). Let ψ > 0 denote the first eigenfunction of L∗

in H1
0 (Ω), ie.

L∗(ψ) = λ1(L∗)ψ = λ1(L)ψ in Ω, ψ = 0 on ∂Ω.

Multiply the equation for ψ by v and integrate to obtain

λ1(L)

∫
Ω
ψv =

∫
Ω
L∗(ψ)v

=

∫
Ω

(−∆v + b · ∇v)ψ − p
∫

Ω
vpψ

= (1− p)
∫

Ω
vpψ

and since v, ψ > 0 and p > 1 we see that λ1(L) < 0.

Lemma 2. Let b be divergence free smooth vector field and v > 0 denote
a smooth solution of −∆v + b · ∇v = vp in Ω with v = 0 on ∂Ω. Set
L1(ζ) := −∆ζ − b · ∇ζ. Then one has the estimate

p‖v‖p−1
L∞ > λ1(L1) ≥ λ1(−∆),

where this last term is just the first eigenvalue of −∆ in H1
0 (Ω).

Proof. Let φ, ψ > 0 denote the first eigenfunctions (with zero Dirichlet
boundary conditions);

−∆φ+ b · ∇φ = pvp−1φ+ µφ in Ω,

−∆ψ − b · ∇ψ = λ1(L1)ψ in Ω,

and note that µ < 0 from the previous lemma. Multiply the first equation
by ψ and integrate to see that

µ

∫
Ω
φψ +

∫
Ω
pvp−1φψ =

∫
Ω
L∗1(φ)ψ

=

∫
Ω
φL1(ψ)

=

∫
Ω
φλ1(L1)ψ.

6



But since µ < 0 we have∫
Ω
pvp−1φψ ≥

∫
Ω
λ1(L1)φψ,

and then the desired result follows since φ, ψ > 0. To complete the proof we
show that λ1(L1) ≥ λ1(−∆). Multiply the equation for ψ and integrate to
arrive at

λ1(L1)

∫
Ω
ψ2dx =

∫
Ω
|∇ψ|2dx−

∫
Ω

(b · ∇ψ)ψdx

=

∫
Ω
|∇ψ|2dx since div(b) = 0

≥ λ1(−∆)

∫
Ω
ψ2dx minimality of λ1(−∆),

and this completes the proof.

We show that for 1 < p < N+2
N−2 and λ > 0 there exists a positive classi-

cal solution of (Q)λ. To do this we use essentially the exact degree theory
argument from [34] where they examined positive solutions of higher order
equations with lower order terms. For more details on the degree theory
argument one can see the book [2]. In addition there is some C1 > 0 (in-
dependent of λ) such that any positive classical solution of (Q)λ satisfies
supΩ u ≥ C1.

Proof of Proposition 1. Set λ = 1 for simplicity and define Kt : L∞(Ω)→
L∞(Ω) via Kt(u) = v where v satisfies

−∆v + a(x) · ∇v = |u|p + t Ω, v = 0 ∂Ω.

We first note that Kt is a compact operator for each t. We first show
that for large enough t that there is no solution of u − Kt(u) = 0. Let
L(φ) := −∆φ + a(x) · ∇φ and let L∗ denote its formal adjoint with first
eigenpair given by (λ∗1, ψ) where ψ > 0. Multiply the equation by ψ and
integrate by parts to see∫

Ω
(up + t− λ∗1u)ψ(x)dx = 0

and hence we have
t ≤ sup

0≤u
(λ∗1u− up) ,
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which gives us an upper bound on t. Let T be large enough such that there
is no solution of u − KT (u) = 0. Let BR denote the open ball of radius
R centered at the origin in L∞(Ω). Note we can write this nonexistence
result as 0 /∈ (I −KT )(BR) and this implies deg(I −KT , BR, 0) = 0 for all
R > 0; see [2] or Theorem 2.1 in [29] for some well known results regarding
Leray-Schauder degree theory.

Now we claim that for R large enough that we have 0 = deg(I −
KT , BR, 0) = deg(I − K0, BR, 0). We prove the result via the homotopy
invariance, see Theorem 2.1 (iii) in [29]. If we assume the result is false then
there is some Rm → ∞ and 0 < um ∈ ∂BRm (and 0 ≤ tm ≤ T ) such that
um −Ktm(um) = 0. So um satisfies

−∆um + a(x) · ∇um(x) = upm + tm Ω, um = 0 ∂Ω

where xm ∈ Ω satisfies um(xm) = ‖um‖L∞ = Rm →∞.

Define vm(x) = um(xm+rmx)
Rm

for x ∈ Ωm := {x ∈ RN : xm + rmx ∈ Ω}.
Then vm satisfies 0 ≤ vm ≤ 1 with vm(0) = 1 and

−∆vm(x) + bm(x) · ∇vm(x) = r2
mR

p−1
m vm(x)p +

tmr
2
m

Rm
for x ∈ Ωm,

with vm = 0 on ∂Ωm where bm(x) := rmam(xm + rmx). Now pick rm such
that r2

mR
p−1
m = 1 and so rm → 0. Define δm := dist(xm, ∂Ω) and we need

to consider a few cases. After passing to subsequences we can assume one
of the following holds:

case 1. rm
δm
→ 0,

case 2. rm
δm
→ γ ∈ (0,∞),

case 3. rm
δm
→∞.

Case 1. In this case Ωm → RN and after some compactness arguments we
have (for a subsequence) vm → v in C1,α

loc (RN ) and v solves: 0 ≤ v ≤ 1 with
v(0) = 1 and

−∆v = vp in RN . (5)

Since 1 < p < N+2
N−2 this contradicts well known results of [22, 23], at least

in the case of N ≥ 3. In the case of N = 2 the proof of the needed Liouville
theorem has a simple proof which we include for the sake of the reader. For
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R > 1 we let 0 ≤ φR ∈ C∞c (B2R) with φR = 1 in BR and 0 ≤ φR ≤ 1.
Moreoever there is some C > 0 such that |∇φR| ≤ CR−1, |∆φR| ≤ CR−2

for all R > 1. Multiply (5) by φkR (k large to be picked later) and integrate
by parts to arrive at∫

upφkdx =

∫
u(−∆φk)dx

=

∫
u(−k)(k − 1)φk−2|∇φ|2dx+

∫
ukφk−1(−∆φ)dx

≤
∫
ukφk−1(−∆φ)dx

≤
(∫

upφ(k−1)pdx

) 1
p

k

(∫
|∆φ|p′dx

) 1
p′

,

where p′ is the conjugate of p and note for large k we have (k− 1)p ≥ k and
hence φk ≥ φ(k−1)p. Using this we can combine the integrals to arrive at∫

BR

updx ≤ CRN−2p′ ,

and recalling N = 2 we see that N − 2p′ = 2 − 2p′ < 0 and hence sending
R→∞ we see

∫
RN u

pdx = 0 which shows u = 0. Note in higher dimensions
this approach proves a Liouville theorem for super solutions of −∆u = up

in RN for 1 < p < N
N−2 .

Case 2. After a suitable rotation of co-ordinates one can see that Ωm →
H := {x ∈ RN : xN > −1

γ }. By a limiting argument there is some 0 ≤ v ≤ 1
such that v(0) = 1, 0 ≤ v ≤ 1 with −∆v = vp in H with v = 0 on ∂H.
This contradicts some Liouville theorems on the half space, for instance, in
[10], it was shown the Liouville theorem holds for 1 < p < N+1

N−3 (the critical
exponent in dimension N − 1). This completes the proof of this case. For
the interest of the reader we will give a bit more details on these half space
Liouville theorems since they have had some interest in the last number of
years. Lets now assume the half space is RN+ = {x ∈ RN : xN > 0}. In [10]
the idea was to use the Moving Plane Method to show a positive solution
was increasing in xN and then he considered

w(x′) := lim
xN→∞

v(x′, xN )

which can be shown to satisfy

−∆RN−1w(x′) = w(x′)p in RN−1,
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with w bounded and positive. He then applied known results from [22, 23],
in the case of N − 1 ≥ 3, and similar results in lower dimensions, to get
the desired contradiction. The next major improvement was in [21]. The
interest here was in Liouville theorems for stable (possibly) sign changing
solutions of −∆u = |u|p−1u in RN . Here a Liouville theorem was proven for
all 1 < p < pJL, the Joseph-Lundgren exponent. Given a positive solution
on the half space which is increasing in xN one extends oddly to the full
space and this solution can be shown to be stable and hence the results of
[21] can be applied. This substantially increased the range of p from the
previous result. One should also see [11, 12] for related works.

For bounded solutions on the half space (which is sufficient for our pur-
poses) this Liouville theorem was extended to all p > 1 in [7]. This result
was recently improved by removing the boundedness assumption of the so-
lution, see [20].

Case 3. Here we are assuming rm
δm
→ ∞; recall r2

mR
p−1
m = 1. So note we

have R
p−1
2

m δm → 0. Define vm(x) := um(xm+δmx)
Rm

for x ∈ Ωm := {x ∈ RN :
xm + δmx ∈ Ω}. Then note that vm satisfies

−∆vm(x) + bm(x) · ∇vm(x) = Rp−1
m δ2

mvm(x)p +
tmδ

2
m

Rm
for x ∈ Ωm (6)

with vm = 0 on ∂Ωm; where bm(x) := δma(xm + δmx). Also note that
0 ≤ vm ≤ 1 with vm(0) = 1. Also note that (after suitable rotation of
domain) we have Ωm → {x ∈ RN : xN > −1} =: H. Also note that

sup
Ωm

(
Rp−1
m δ2

mvm(x)p +
tmδ

2
m

Rm

)
→ 0

as m → ∞. So from this we can pass to a limit to find some v such that
−∆v = 0 in H with v = 0 on ∂H with v(0) = 1 and 0 ≤ v ≤ 1. But this
contradicts the strong maximum principle for harmonic functions. Combin-
ing these three cases proves the claim. For more detailed calculations direct
the reader to [19].

We now show that for large enough R > 0 and small enough ε > 0 we
have

0 = deg(I −K0, BR, 0) = deg(I −K0, BR\Bε, 0) + deg(I −K0, Bε, 0). (7)

The first equality we already have and hence to prove the result we need
to verify the second equality. To prove the result we will use the additivity
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property of Leray-Schauder degree theory; see Theorem 2.1 part (i) [29].
First note we can write BR = Bε ∪

(
BR\Bε

)
. Provided we can show that

for small enough ε > 0 that u −K0(u) 6= 0 on ∂Bε then we can apply the
additivity result and hence (7) holds. So we need to show there is no solu-
tion of (Q)1 with ‖u‖L∞ = ε; but this follows from Lemma 2.

We now show that deg(I−K0, Bε, 0) = 1 and hence deg(I−K0, BR\Bε, 0) =
−1 and we have our desired nonzero solution.

Consider the homotopy u − tK0(u) and we claim that for 0 < ε small
enough we have 1 = deg(I,Bε, 0) = deg(I −K0, Bε, 0).

Suppose not, so there is εm ↘ 0 and ‖um‖L∞ = εm such that um −
tmK0(um) = 0 (tm ∈ [0, 1]). So we have um > 0 satisfies −∆um +a ·∇um =
tmu

p
m in Ω with um = 0 on ∂Ω and the maximum principle shows we must

have tm > 0. Set vm := um
εm

and note that 0 < vm satisfies supΩ vm = 1 and

−∆vm + a · ∇vm = tmε
p−1
m vpm Ω, vm = 0 ∂Ω.

Now note the right hand side of the equation converges to zero in L∞(Ω)
and hence we must have vm → 0 in C1(Ω), contradicting the fact that vm
is normalized in L∞.

We now prove the desired lower bound on supΩ u; which essentially fol-
lows from the above argument. Suppose um a positive smooth solution
of (Q)λm and we suppose εm := supΩ um → 0. Set vm := um

εm
and then

supΩ vm = 1 and one has −∆vm+λma(x) ·∇vm = εp−1
m vpm in Ω with vm = 0

on ∂Ω. Then using Theorem A (see below) we see that ‖vm‖L∞ → 0; a
contradiction. 2

2.2 Asymptotics in λ; estimates on solutions of (Q)λ

We begin with a theorem from [5].

Theorem A. ([5]) Suppose

−∆u+ b(x) · ∇u = f(x) in Ω, u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN . For all p > N
2 there is some

Cp > 0 such that for all sufficiently regular vector fields b with div(b) = 0
one has ‖u‖L∞ ≤ Cp‖f‖Lp for p > N

2 . (The important point here is that
Cp is independent of b). We give a sketch of a proof of this result in the
Appendix.
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Remark 1. The proof of the above theorem was proven using some parabolic
methods. One can use a more standard elliptic proof; either a De Giorgi
method or a Moser iteration type argument to prove the result. Using this
approach one sees they can weaken the divergence free condition to div(b) ≤
0.

Lemma 3. (Initial integral bound). Let a satisfy (A1) or (A2) and suppose
ψ is a positive smooth first integral of a(x) promised in (A1) and (A2). Then
there is some C = C(p) such that for all positive smooth solutions u of (Q)λ
we have ∫

Ω
upψdx ≤ C.

(Note the estimate is independent of λ ).

Proof. We assume we are in the case of (A2); in the case of (A1) the proof
is similar. Let ψ denote a smooth positive first integral of a(x) which is
comparable to the distance function near ∂Ω and with ∆ψ ≥ 0 near ∂Ω; lets
say ∆ψ ≥ 0 in Ωε. Multiplying (Q)λ by ψ and integrating gives∫

Ω
upψdx =

∫
Ω

(−∆ψ)udx ≤
∫

Ω\Ωε

−∆ψ

ψ
1
p

(
uψ

1
p

)
dx

and now apply Hölder’s inequality on the right to get the desired bound.

The following result really is just an estimate from [32] for subcritical
elliptic problems without boundary conditions.

Proposition 2. Let a satisfy (A1) (and we assume a = 0 in Ω2ε) and
suppose um is a smooth positive solution of (Q)λm where 1 < p < N+2

N−2 .
Then there is some C > 0 (independent of m) such that

sup
Ωε

um ≤ C.

Proof. Note that −∆um = upm in Ω2ε and so we can apply Theorem 3.1 in
[32] to see there is some C > 0 (independent of m) such that

um(x) ≤ C

dist(x, ∂Ω2ε)
2
p−1

,

for all x ∈ Ω2ε. Now suppose that Rm = supΩε um → ∞. Then there is
some xm ∈ Ωε with dist(xm, ∂Ω) → 0 such that supΩε um = um(xm) → ∞.
Now we can apply the standard blow up argument to obtain a contradiction,
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which we include some details for the readers convenience. First this blow
up argument is essentially contained in the proof of Proposition 1. So, as in
the previous proof, we define vm(x) = um(xm+rmx)

Rm
for x ∈ Ωm := {x ∈ RN :

xm + rmx ∈ Ωε}. Then vm satisfies 0 ≤ vm ≤ 1 with vm(0) = 1 and

−∆vm(x) = r2
mR

p−1
m vm(x)p for x ∈ Ωm.

We can write ∂Ωm = Γm ∪ Γ̂m where Γm = {x ∈ RN : xm + rmx ∈ ∂Ω} and
Γ̂m = {x ∈ RN : dist(xm + rmx, ∂Ω) = ε} and so note that vm = 0 on Γm.
Set δm = dist(xm, ∂Ω) as before and one needs to consider the same three
cases: case 1. rm

δm
→ 0,

case 2. rm
δm
→ γ ∈ (0,∞),

case 3. rm
δm
→∞.

In all three cases we get the same limiting equations and hence we get
the same desired contradictions.

Corollary 1. Suppose a satisfies (A1) and 1 < p < N+2
N−2 . Suppose um is a

sequence of smooth positive solutions of (Q)λm. Then there is some C > 0
(independent of m) such that ∫

Ω
upmdx ≤ C.

Proof. This follows directly from Lemma 3 and Proposition 2.

We now prove our main results; Theorem 1 and 2.

Proof of Theorem 1. Let um > 0 denote a smooth solution of −∆um +
λma · ∇um = upm in Ω with um = 0 on ∂Ω. We first obtain a Lp+1 bound
on um. Let q := 2∗ and multiply the equation by um and integrate to see
CN‖um‖2Lq ≤ ‖∇um‖2L2 = ‖um‖p+1

Lp+1 where the first inequality is coming
from the critical Sobolev imbedding CN‖φ‖2Lq ≤ ‖∇φ‖2L2 for all φ ∈ H1

0 (Ω).
Let 0 < θ < 1 be such that

1

p+ 1
=
θ

p
+

1− θ
q

,

and by Lp interpolation we have

‖um‖Lp+1 ≤ ‖um‖θLp‖um‖1−θLq ,
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and combining with the previous inequality we obtain

‖um‖Lp+1 ≤ ‖um‖θLp‖um‖
(p+1)(1−θ)

2

Lp+1 ≤ C‖um‖
(p+1)(1−θ)

2

Lp+1 ,

where the constant C is independent of m and is promised by Corollary 1.
Note we get an Lp+1 bound on um provided (p+1)(1−θ)

2 < 1, which holds
exactly when p < N

N−2 .

An iteration. Let t1 >
1
2 and for k ≥ 1 set

tk+1 =
qtk
2
− p− 1

2
.

In the end we will take t1 = 1 which simplifies some of the computations;
but we are being more general now since a priori its not clear this doesn’t
give a better result.

Suppose tk >
1
2 and suppose there is some Ck such that ‖um‖Lp+2tk−1 ≤

Ck for all m. Then there is some Ĉk such that ‖um‖Lp+2tk+1−1 ≤ Ĉk for all m.

Proof of the inductive step. If one multiplies (Q)λm by u2tk−1
m and integrates

by parts (one needs to take a bit of care near ∂Ω if tk < 1) one arrives at

(2tk − 1)

∫
Ω
u2tk−2
m |∇um|2dx =

∫
Ω
up+2tk−1
m dx,

and the left hand side can be rewritten as

(2tk − 1)

t2k

∫
Ω
|∇(utkm)|2dx.

By known results one has utkm ∈ H1
0 (Ω) since tk >

1
2 (see for instance [9]) and

one can now apply the critical Sobolev inequality to this term and combine
with the above equality to arrive at(∫

Ω
utkqm dx

) 2
q

≤
C̃N t

2
k

2tk − 1

∫
Ω
up+2tk−1
m dx,

which we can rewrite as

‖um‖2tkLtkq ≤
C̃N t

2
k

2tk − 1
‖um‖p+2tk−1

Lp+2tk−1 .
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Using the definition of tk+1 we see that

‖um‖2tkLp+2tk+1−1 ≤
C̃N t

2
k

2tk − 1
‖um‖p+2tk−1

Lp+2tk−1 ,

which completes the proof of the inductive step.

We now examine the cobweb diagram for tk and, for the time being, we
omit the needed assumption that tk >

1
2 . If t1 >

p−1
q−2 the diagram shows

that tk → ∞. Noting that when one take tk = 1
2 we have p + 2tk − 1 = p

one might suspect that they can improve on the range of p we have given;
we are unable to make any improvements like this.

If we now return to our case with t1 = 1 we see that tk →∞ and tk > 1
for all k ≥ 2. Fix N

2 < T < ∞ and from the above (after a finite number
of iterations) we see upm is uniformly bounded (in m) in LT (Ω) and we can
apply the result from [5] (see Theorem A above) to see that um is bounded
in L∞.

Now recall from Proposition 1 there is some C1 > 0 such that supΩ um ≥
C1 for all m. By a diagonal argument we can now find a subsequence umk
and some u ∈ H1

0 ∩ L∞ such that umk ⇀ u in H1
0 and umk → u in LT for

all T <∞ (after using convergence in L2 and interpolation).
By the proof of Proposition 3.1 in [5] we have∫

Ω
(a(x) · ∇um(x))2dx ≤ C

λm
,

and hence um is approximating a first integral.
We now show that u is nonzero. From (Q)λ we have

∫
Ω |∇um|

2dx =∫
Ω u

p+1
m dx. By the critical Sobolev imbedding and using 2 < p + 1 < 2∗

we then get

CN

(∫
Ω
u2∗
mdx

) 2
2∗

≤
∫

Ω
up+1
m dx ≤

(∫
Ω
u2∗
mdx

) p+1
2∗
(∫

Ω
dx

)1− p+1
2∗

,

that implies
CN,Ω ≤ ‖um‖L2∗ .

But recall that um is convergent (or at least some subsequence is) in LT

for all T < ∞. From this we see that we must have CN,Ω ≤ ‖u‖L2∗ and
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hence u 6= 0. 2

Proof of Theorem 2. We begin by recalling the Hardy-Sobolev inequality:
let Ω denote a bounded smooth domain in RN (with N ≥ 3), τ ∈ [0, 1] and
q such that 1

q = 1
2∗ + τ

N . Then there is some C = C(Ω, τ) such that∥∥ ζ
δτ
∥∥
Lq
≤ C‖∇ζ‖L2 , for all ζ ∈ H1

0 (Ω),

where δ is the distance function as before. By changing C we can replace δ
in the inequality with ψ, where ψ is promised since a satisfies (A2).
Now let u denote a positive smooth solution of (Q)λ with λ > 1. The
following chain of inequalities will give us an estimate on the solution. At
one we will use the Hardy-Sobolev inequality with τ := 1

N+1 and q := 2(N+1)
N−1 .

By using the explicit value of q and τ we have∫
Ω
u2+ 2p

N+1dx =

∫
Ω
u

2+p(1− 2
q

)
dx

=

∫
Ω

u2

δ2τ
(upδ)

1− 2
q dx

≤

(∫
Ω

{
u2

δ2τ

} q
2

dx

) 2
q (∫

Ω
(upδ)

(1− 2
q

) q
q−2dx

) q−2
q

=

(∫
Ω

uq

δτq
dx

) 2
q
(∫

Ω
upδdx

) q−2
q

≤
∥∥ u
δτ
∥∥2

Lq
C

≤ C2

∫
Ω
|∇u|2dx by Hardy-Sobolev inequality

= C2

∫
Ω
up+1dx from (Q)λ.

Note this gives us an estimate provided 2 + 2p
N+1 > p + 1 and note this

holds exactly when p < N+1
N−1 . Hence for this range of p we have∫

Ω
up+1dx ≥ C3

∫
Ω
u2+ 2p

N+1dx

= C3

∫
Ω

(up+1)αdx where α :=
2 + 2p

N+1

p+ 1
> 1

≥ C
(∫

Ω
up+1dx

)α
,

16



by Jensen’s inequality. From this we see we get an Lp+1 and H1
0 estimate

on u independent of λ and one can now perform an iteration as in the case
of (A1) to see u is bounded in L∞ independently of λ. We now proceed as
in the case of (A1) to pass to a limit and to show the limit is nonzero. 2

3 Appendix

Sketch of a proof of Theorem A. We will use a variant of the De Giorgi
method to sketch a proof. This variant uses an ODE approach but it can
be proven using a De Giorgi iteration or a Moser iteration. Let p > N

2
and we assume N is large for simplicity of dealing with the exponents. Let
f ∈ Lp(Ω) be smooth and we assume (for simplicity) that f ≥ 0 in Ω. Take
‖f‖Lp = 1 and let u denote a nonnegative solution of −∆u+ b(x) · ∇u = f
in Ω with u = 0 on ∂Ω with b smooth and div(b) ≤ 0 in Ω. Let γ = p′ and
hence we have 1 < γ < γ + 1 < q where q = 2∗. For t ≥ 0 set

g(t) =
1

γ + 1

∫
Ω

(u(x)− t)γ+1
+ dx,

where + refers to the positive part of the function. Then note

−g′(t) =

∫
Ω

(u− t)γ+dx.

By Lp interopolation we have

‖(u− t)+‖Lγ+1 ≤ ‖(u− t)+‖θLγ‖(u− t)+‖1−θLq ,

where
1

γ + 1
=
θ

γ
+

1− θ
q

.

Rewriting this in terms of g and g′ gives

(g(t))
1

γ+1 ≤ C(−g′(t))
θ
γ ‖(u− t)+‖1−θLq ,

where C = C(p). We now use the equation to get the final term involving
the Lq norm. Multiplying the equation by (u−t)+ and integrating and using
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the fact div(b) ≤ 0 we arrive at

C‖(u− t)+‖2Lq ≤
∫

Ω
|∇(u− t)+|2dx

≤ ‖f‖Lp‖(u− t)+‖Lγ
= ‖(u− t)+‖Lγ

= (−g′(t))
1
γ (8)

where C is from the critical Sobolev imbedding. Subbing this into the pre-
vious inequality gives

(g(t))
1

γ+1 ≤ C(−g′(t))
θ
γ

+ 1−θ
2γ ,

and this can be written as

g′(t) ≤ −Cg(t)α,

where α = 2γ
(γ+1)(θ+1) and note the C only depends on p and N . Since

p > N
2 (and recall we ar taking N big) this implies that γ < N

N−2 and after
a computation one can see that α ∈ (0, 1). Note that if g(t) = 0 for some
t > 0 then we have u ≤ t a.e. in Ω. Lets assume this differential inequality
is satisfied on (0, T ). Then we have

g(t)1−α ≤ g(0)1−α − C(1− α)t, ∀0 < t < T

and this shows that g decays to zero in finite time and also gives us the
estimate that

T ≤ g(0)1−α

C(1− α)
,

note this decay to zero relies on the fact the exponent is strictly less than 1.
So provided we can estimate g(0) independent of f this gives us a uniform
L∞ on u as desired. But note that

g(0)(γ + 1) =

∫
Ω
u(x)γ+1dx,

and from (8) we have

C‖(u− t)+‖2Lq ≤ ‖(u− t)+‖Lγ ,

which completes the proof after noting that γ + 1 < q.
2

Data Sets. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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