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Abstract
We consider positive classical solutions of
—Au+ Xa(z) - Vu = uP in Q,
u = 0 on 01},

where p > 1, a is a smooth divergence free vector field and A > 0
is a large parameter. Under certain assumptions on a(x) and (or)
assumptions on the existence of first integrals of a(x) we show there is
a subsequence of smooth positive solutions which converge to a nonzero
first integral of a(z) as A — oo.
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1 Introduction

In this work we are interested in examining positive classical solutions of

—Au+ Aa(x)-Vu = wP inQ,
(@) u = 0 on 01},
u > 0 in €,

where A > 0 is a parameter and where Q is a bounded domain in RV
(N > 2) with smooth boundary. We will assume that a is a smooth and
divergence free vector field. Our main interest will be the asymptotics of
positive solutions as A — oo.
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1.1 Background

We begin by considering the case of (Q)x when a = 0. In this case the
equation becomes

—Au = uP in €, (1)

u = 0 on 0f2.
For N > 3 we define the critical exponent ps = % and note that it is
related to the critical Sobolev imbedding exponent 2* := % = ps + 1.

For 1 < p < ps one has that H}(2) is compactly imbedded in LP*1(Q) and
hence one can show the existence of a positive minimizer of

Vul?d
min fQ‘ u| v -
u€ Hg (2)\{0} (J;, lulp+idz) vt

This positive minimizer is a positive solution of (1), see for instance the
book [39]. Note in the case of N = 2 we have the existence of a posi-
tive minimizer for any p > 1. For p > ps, H}(Q) is no longer compactly
imbedded in LP*1(Q) and so to find positive solutions of (1) one needs to
take other approaches. For p > ps the well known Pohozaev identity [31]
shows there are no positive solutions of (1) provided €2 is star shaped. For
general domains in the critical /supercritical case, p > ps, the existence ver-
sus nonexistence of positive solutions of (1) is a very delicate question; see
[1, 8, 17, 16, 15, 14, 18, 30, 27, 28, 36, 37].

The various critical exponents. In this work a few well known critical

exponents make an appearance; ppr = % < % < ps at least when

N > 3. To give a background we introduce the equation
—Au = b(x)uP inQ, )
u = 0 on 0f2,

where  a bounded domain with smooth boundary in RY (N > 3) and b is
a smooth positive function. For b(z) = by > 0 and  star shaped we know
there is no positive classical solution for any p > ps as mentioned above.

For general b, in 1977, Brezis and Turner [6] showed that an H}(€2)
solution is smooth provided 1 < p < ppr the Brezis-Turner exponent. For b
constant this was improved to the full range 1 < p < p in [22, 13]. In [33] it
was shown that very weak solutions of (2) are smooth provided 1 < p < ppr.
Here we define a very weak solution of (2) by u € L'(Q) (with some minor
other assumptions) such that

/Q(—Aqb)udx = / b(z)uPpdr, Yo € {p € C*(Q): ¢ =0on N},

Q



note this idea of a very weak solution is essentially the same as a distribu-
tional solution but the boundary condition for u has been encoded into the
definition by slightly enlarging the class of test functions.

If one sets u(z) = |z|7* —1 with a = -%; there is some C, > 0 such that
u is a very weak solution of —Au = Cp(u + 1)P in By with v = 0 on 0B,
provided % < p < ps. This leaves open the question of whether very weak
solutions of (2) are smooth for ppr < p < 25. In [38] it was shown that
for all p > ppr there is some bounded positive b and a very weak solution
of (2) which is neither bounded or H}(€2). This shows the optimality of the
Brezis-Turner exponent.

Adding the advection term. We now return to (@)x. For the case of
general a(z) the equation is no longer variational and hence one cannot find
critical points of a suitable energy to find positive solutions of (Q),. We
point out the special case of a(z) = V+(z) where v is a scalar function; in
this case the equation is variational and hence one can find critical points
of a suitable energy. In particular a minimizer of

e M|\ Vu|2dz
B (u) = —J0 Vel

(Jo e X ulpttda) 7T

satisfies (Q)a.

We now consider the idea of large drift problems. We first mention that
these large drift problems have attracted a lot of attention in the context of
travelling fronts, see for instance [24, 25, 26, 3, 4, 35, 40] and also [5]. Of
key importance to large drift problems is the notion of a first integral which
we now define.

Definition 1. (First integrals) We say ¢ € H}(Q) is a first integral for a
provided v # 0 and a(x) - Vip(z) = 0 for a.e. x € Q. We denote the class
of first integrals of a by A. Denote Ay :={¢p € A:19 >0a.e.}.

We mention here a result regarding a linear problem with large advection.
Berestycki, Hamel and Nadirashvili in [3] examined the eigenvalue problem
given by

—A¢p+ta(x) - Vo = o in €, (3)
¢ = 0 on 052,

where p; denotes the principal eigenvalue and their interest is what happens
when ¢t — oo. For smooth divergence free vector fields a they showed that



{ut}+ is bounded if and only if a has a first integral in H{ (). Moreover, if
a has a first integral in HZ(Q) then

2
[ — min fQ [Vl

wEAW ast — oo, (4)

and the minimum in the right-hand side of (4) is achieved.

We let 6(x) := dist(x,0Q) denote the Euclidean distance from x to 0f.
For £ > 0 small set . := {z € Q:d(x) < &}.

Assumptions on a(z). There are two assumptions we impose on a(x)
that allow us to obtain results. The important issue is whether a(x) has a
first integral with suitable properties. We note this can be quite a complex
issue which we don’t want to address here, the interested reader should see
24, 25, 26]).

(A1) a is smooth, divergence free and compactly supported in Q. In this
case one can easily construct a smooth positive first integral ¥ with Ay > 0
near 0f) (see below how to get this condition on Aw) and ¢ > ¢d in 2 for
some ¢ > 0.

(A2) a is smooth, divergence free and there exists some smooth ¥ € Ay
and ¢; > 0 such that ¢(z) > c¢10(z) in Q. Note under this assump-
tion that |V1| is bounded away from zero near 9. By replacing ¢ with
x = m(p(x))? +¢(z) (for large m) we can assume At > 0 near 9. So in
case (A2) we have the existence of a smooth positive first integral ¢ with
At > 0 near 9 and 1 > ¢d in 2 for some ¢ > 0.

Note in both the above cases we can assume there is some Cy > 0 such
that ¢ < (56 in Q; this follows from the smoothness of 1. So in both cases
we will assume 9 is comparable to . Note also that in (A1) the only real
assumption is on a. In the case of (A2) we are making an assumption on
the existence of positive smooth first integral of a.

Acknowledgments. We would like to thank the anonymous referee for the
detailed report which greatly increased the readability of the work.



1.2 Main results

Proposition 1. (Ezistence of positive smooth solution) Assume 1 < p <
% and a is smooth and bounded. Then there is a smooth positive solution
of (Q)x. If we further assume divergence of a is zero then there is some
Cy > 0 (independent of X\) such that any positive solution of (Q)x satisfies

supqu > C1.
We now state our mains results in the case of the asymptotics in A.

Theorem 1. Let a satisfy (A1), ¢ is as in condition (A1) and 1 < p < 5.
Let uy, denote a sequence of smooth solutions of (Q)x,, with A\, — co. Then
there is some C; > 0 such that 0 < C7 < supq um < Cy. Moreover we have

C
/(a(ac) Vi (2))2dz < < 0.
Q )\m
Also there is some u € HI\{0} N Ay and some {um, }r such that um,, — u
in HY and um, — u in LT for all T < occ.

Theorem 2. Let a satisfy (A2) and let 1 < p < % Let u,, denote a
sequence of smooth positive solutions of (Q)x,, with Ay, — o0o. Then there
is some C; > 0 such that 0 < C < supq Uy < Ca. Moreover we have

/(a(:z:) - Vg, (z))2dz < < — 0.

Q Am

Also there is some u € Hi\{0} N Ay and some {tum, }r such that uy,, — u
in HY and wp,, — uw in LT for all T < oco.

Some open problems. It would be interesting to investigate whether these
results should hold for a larger range of p. For instance can one extend
Theorem 1 and (or) 2 to all 1 < p < ps? Can one extend Theorem 2 to all
1<p< %? Since one is dealing with smooth solutions the most natural
approach is to try a rescaling/blow up approach; of course \,, — oo adds
major difficulties to this approach and this is why we took a more integral
estimate approach so the advection term drops out.

2 Proofs

2.1 Existence results for fixed )\

We begin with some lemmas.



Lemma 1. Let b be a divergence free smooth vector field and v a smooth
positive solution of —Av +b(z) - Vv =P in Q with v =10 on 09Q. Let

L(9) == —A¢ +b(x) - Vo —pu(x)' ¢
Then \1(L) < 0 (here A(L) is the first eigenvalue of L in HZ(Q)).

Proof. Let L* denote the adjoint of L, ie. L*(1)) = —Av —b- V) — pvP~ ).
Note that A;(L) = A;(L*). Let ¢» > 0 denote the first eigenfunction of L*
in H}(Q), ie.

L) =M (L) =M (L)Y inQ, ¢ =0 ond.

Multiply the equation for ¢ by v and integrate to obtain

Al(L)/Qm = /QL*(WJ
= /Q(—Av+b-Vv)1/J—p/QUp¢

= (1—p)/ﬂv%

and since v, > 0 and p > 1 we see that A;(L) < 0. O

Lemma 2. Let b be divergence free smooth vector field and v > 0 denote
a smooth solution of —Av +b- Vv = vP in Q with v = 0 on 0Q. Set
Li(¢) := —A( —b- V(. Then one has the estimate

pllolf= > Ai(L1) = M(=A),
where this last term is just the first eigenvalue of —A in H&(Q)

Proof. Let ¢,v > 0 denote the first eigenfunctions (with zero Dirichlet
boundary conditions);

—Ap+b-Vo=pP 1o+ pup inQ,
=AY —b-Vip =\ (L1)Y in Q,

and note that p < 0 from the previous lemma. Multiply the first equation
by v and integrate to see that
| zi@w
Q

i /Q o0+ /Q PPy
= /QﬁbLl(@Z))

— / oA (L1)o
Q



But since u < 0 we have

/Q PPl > /Q (L),

and then the desired result follows since ¢, > 0. To complete the proof we
show that A\j(L1) > A1(—A). Multiply the equation for ¢ and integrate to
arrive at

() [wide = [ [VePdo- [ @ Vo)uds
Q Q Q
= /|V¢|2dx since div(b) =0
Q
> Al(—A)/1/12dJZ minimality of A1(—A),
Q

and this completes the proof. O

We show that for 1 < p < % and A > 0 there exists a positive classi-
cal solution of (@Q)x. To do this we use essentially the exact degree theory
argument from [34] where they examined positive solutions of higher order
equations with lower order terms. For more details on the degree theory
argument one can see the book [2]. In addition there is some C; > 0 (in-
dependent of A) such that any positive classical solution of (Q), satisfies
supq u > C.

Proof of Proposition 1. Set A = 1 for simplicity and define K; : L*°(Q2) —
L>(Q) via K;(u) = v where v satisfies

—Av+a(z) - Vo=|ulf +1¢ Q, v=0 00N

We first note that K; is a compact operator for each t. We first show
that for large enough ¢ that there is no solution of v — Ky(u) = 0. Let
L(¢) == —A¢ + a(x) - V¢ and let L* denote its formal adjoint with first
eigenpair given by (A],v) where ¢» > 0. Multiply the equation by v and
integrate by parts to see

/ (uP +t — ANju) p(x)de =0
Q

and hence we have

t <sup (Aju—uP),
0<u



which gives us an upper bound on t. Let T be large enough such that there
is no solution of u — Kr(u) = 0. Let Br denote the open ball of radius
R centered at the origin in L*°(€2). Note we can write this nonexistence
result as 0 ¢ (I — K7)(Bgr) and this implies deg(I — K, Bgr,0) = 0 for all
R > 0; see [2] or Theorem 2.1 in [29] for some well known results regarding
Leray-Schauder degree theory.

Now we claim that for R large enough that we have 0 = deg(l —
Kr,Bpg,0) = deg(I — Ky, Bg,0). We prove the result via the homotopy
invariance, see Theorem 2.1 (iii) in [29]. If we assume the result is false then
there is some R, — oo and 0 < u,, € 0Bpg,, (and 0 < t,,, < T) such that
U, — K, (um) = 0. So uy, satisfies

— Ay, + a(z) - Vug () =ub, +t, Q, Up =0 00
where x,,, €  satisfies U, () = ||um|| Lo = Ry — 0.
Define vy, (z) = %ﬂw forz € Q== {z € RY : 2, +rppz € Q).
Then v, satisfies 0 < v, < 1 with v,,(0) =1 and
2

tinTo,

— A (x) 4 b (2) - Vo () = 72, RE 0, (2)P + 7

for x € Qpy,

with v, = 0 on 99, where by, (x) := rpam(Tm + rmax). Now pick r, such
that 2, RE ' = 1 and so r, — 0. Define 8,, := dist(zy,, Q) and we need
to consider a few cases. After passing to subsequences we can assume one
of the following holds:

case 1. 5= — 0,

Tm
case 2. 5 — v € (0, 00),
case 3. ™ — 00.

m

Case 1. In this case ©,, — R and after some compactness arguments we
have (for a subsequence) v, — v in C’llo’? (RY) and v solves: 0 < v < 1 with
v(0) =1 and

—Av = vP in RY, (5)

Since 1 < p < {42 this contradicts well known results of [22, 23], at least

in the case of N > 3. In the case of N = 2 the proof of the needed Liouville
theorem has a simple proof which we include for the sake of the reader. For



R > 1welet 0 < ¢r € C°(Bsog) with ¢p = 1 in B and 0 < ¢p < 1.
Moreoever there is some C' > 0 such that |Vor| < CR™!,|A¢r| < CR™2
for all R > 1. Multiply (5) by ¢% (k large to be picked later) and integrate
by parts to arrive at

/uqukdx = /u(—Agf)k)d:c
= /u(—k)(k - l)qbk_Q]qu\de—i—/uk¢k_1(—Aqﬁ)d:v
< [ ket (- A0)da

</up¢(k—1)pd$>p k (/ |A¢|p’d$>" ,

where p’ is the conjugate of p and note for large k we have (k—1)p > k and
hence ¢F > ¢*~1P_ Using this we can combine the integrals to arrive at

IA

/ uPdx < CRN-%'
Br

and recalling N = 2 we see that N — 2p’ = 2 — 2p’ < 0 and hence sending
R — oo we see fRN uPdx = 0 which shows u = 0. Note in higher dimensions
this approach proves a Liouville theorem for super solutions of —Au = u?
in RN for 1 < p < 5.

Case 2. After a suitable rotation of co-ordinates one can see that €, —
H:={zxeRN:zy> _71} By a limiting argument there is some 0 < v <1
such that v(0) =1, 0 < v < 1 with —Av = vP in H with v = 0 on 0H.
This contradicts some Liouville theorems on the half space, for instance, in
[10], it was shown the Liouville theorem holds for 1 < p < §£% (the critical
exponent in dimension N — 1). This completes the proof of this case. For
the interest of the reader we will give a bit more details on these half space
Liouville theorems since they have had some interest in the last number of
years. Lets now assume the half space is RY = {z € RY : 2 > 0}. In [10]
the idea was to use the Moving Plane Method to show a positive solution
was increasing in x and then he considered

w(a') = w}}fiinm vz, zN)

which can be shown to satisfy

—Agnva1w(z') = w(z')? in RV-1,



with w bounded and positive. He then applied known results from [22, 23],
in the case of N —1 > 3, and similar results in lower dimensions, to get
the desired contradiction. The next major improvement was in [21]. The
interest here was in Liouville theorems for stable (possibly) sign changing
solutions of —Awu = |u[P~'u in RY. Here a Liouville theorem was proven for
all 1 < p < pyr, the Joseph-Lundgren exponent. Given a positive solution
on the half space which is increasing in xy one extends oddly to the full
space and this solution can be shown to be stable and hence the results of
[21] can be applied. This substantially increased the range of p from the
previous result. One should also see [11, 12] for related works.

For bounded solutions on the half space (which is sufficient for our pur-
poses) this Liouville theorem was extended to all p > 1 in [7]. This result
was recently improved by removing the boundedness assumption of the so-
lution, see [20].

Case 3. Here we are assuming ¥ — oo; recall r?nRﬁl_l = 1. So note we
p—1
have Ry2 0p — 0. Define vy, () := %:smz) for z € Q,, = {z ¢ RV :

T + O € Q}. Then note that v, satisfies

tm02,
Ry,
with v, = 0 on 9Q,,; where b, (z) = dpa(zy, + 0mx). Also note that

0 < vy < 1 with v,,(0) = 1. Also note that (after suitable rotation of
domain) we have Q,,, — {x € RV : zy > —1} =: H. Also note that

— AV (x) + b (2) - Vo (2) = RET162 v (2)P + for x € Q,,  (6)

sup | RP162 p tmég@
p m mvm(gj) + R _>0

Qo m

as m — o0o. So from this we can pass to a limit to find some v such that
—Av =0in H with v = 0 on 0H with v(0) =1 and 0 < v < 1. But this
contradicts the strong maximum principle for harmonic functions. Combin-
ing these three cases proves the claim. For more detailed calculations direct
the reader to [19].

We now show that for large enough R > 0 and small enough € > 0 we
have

0= deg(I - K(),BR,O) = deg(I - KO;-BR\BF.‘?O) + deg(I - KOaBéao)' (7)

The first equality we already have and hence to prove the result we need
to verify the second equality. To prove the result we will use the additivity

10



property of Leray-Schauder degree theory; see Theorem 2.1 part (i) [29].
First note we can write B = B, U (B R\E). Provided we can show that
for small enough & > 0 that u — Ky(u) # 0 on 0B; then we can apply the
additivity result and hence (7) holds. So we need to show there is no solu-
tion of (@)1 with [Ju||z~ = ¢; but this follows from Lemma 2.

We now show that deg(I—Kjo, B.,0) = 1 and hence deg(I—Ky, Br\ B, 0)
—1 and we have our desired nonzero solution.

Consider the homotopy u — tKo(u) and we claim that for 0 < € small
enough we have 1 = deg(I, B;,0) = deg(I — Ky, B:,0).

Suppose not, so there is £, \, 0 and ||uy| e = &, such that u,, —
tm Ko(tm) = 0 (tm, € [0,1]). So we have u,, > 0 satisfies —Auy,, + a- Vu, =
tmth, in © with u,, = 0 on 99 and the maximum principle shows we must
have t,, > 0. Set v, := g—;’l and note that 0 < vy, satisfies supg v, = 1 and

—Avy +a- Vo, = tmefn_lvfn Q, v,=0 0N

Now note the right hand side of the equation converges to zero in L>(2)
and hence we must have v, — 0 in C1(Q2), contradicting the fact that v,
is normalized in L.

We now prove the desired lower bound on supq u; which essentially fol-
lows from the above argument. Suppose u,, a positive smooth solution

of (Q)x,, and we suppose &, = supq U, — 0. Set v, = 22 and then
supq vm = 1 and one has —Auvy, + Apa(x) - Vo, = el LoP in Q with vy, = 0
on 0. Then using Theorem A (see below) we see that ||vy,|L~ — 0; a

contradiction. O
2.2 Asymptotics in \; estimates on solutions of (Q),
We begin with a theorem from [5].
Theorem A. ([5]) Suppose
—Au+b(z) - Vu = f(x) in Q, u=0 on 09,

where Q is a bounded smooth domain in RN . For all p > % there is some
Cp > 0 such that for all sufficiently reqular vector fields b with div(b) = 0
one has |[ul|pe < Cpl fllee for p > . (The important point here is that
Cy is independent of b). We give a sketch of a proof of this result in the
Appendiz.

11



Remark 1. The proof of the above theorem was proven using some parabolic
methods. One can use a more standard elliptic proof; either a De Giorgi
method or a Moser iteration type argument to prove the result. Using this
approach one sees they can weaken the divergence free condition to div(b) <

0.

Lemma 3. (Initial integral bound). Let a satisfy (A1) or (A2) and suppose
1 1s a positive smooth first integral of a(x) promised in (A1) and (A2). Then
there is some C = C(p) such that for all positive smooth solutions u of (Q)x
we have

/ uPpdr < C.
Q

(Note the estimate is independent of A ).

Proof. We assume we are in the case of (A2); in the case of (A1) the proof
is similar. Let ¢ denote a smooth positive first integral of a(z) which is
comparable to the distance function near 02 and with At > 0 near 02; lets
say Ay > 0 in .. Multiplying (@), by ¥ and integrating gives

/Qupwdw - /Q(—Aw)ud:c < /Q\Qs —f;ﬁ (w%) dz

and now apply Hélder’s inequality on the right to get the desired bound. [J

The following result really is just an estimate from [32] for subcritical
elliptic problems without boundary conditions.

Proposition 2. Let a satisfy (Al) (and we assume a = 0 in Q) and

suppose Uy, is a smooth positive solution of (Q)y,, where 1 < p < %

5
Then there is some C > 0 (independent of m) such that

sup u, < C.

€

Proof. Note that —Au,, = ub, in Q. and so we can apply Theorem 3.1 in
[32] to see there is some C' > 0 (independent of m) such that

C
dist(x, 8(225)1’%1

i

um () <

for all x € 2. Now suppose that R,, = supg_u, — oo. Then there is
some T, € Q. with dist(z,,,08) — 0 such that supg_um = U (T,) — 0o.
Now we can apply the standard blow up argument to obtain a contradiction,

12



which we include some details for the readers convenience. First this blow
up argument is essentially contained in the proof of Proposition 1. So, as in
the previous proof, we define v,,(x) = W forz € Q™ :={z ¢ RV :
T + rmx € Q:}. Then v, satisfies 0 < v, < 1 with v,,(0) =1 and

—Avy(x) = 2, RP Y, ()P for x € Q™.

We can write 9Q™ =T, UT,, where T, = {z € RN : 2, + 1w € 00} and
= {zx € RN : dist(xp, + rmx, Q) = €} and so note that v, = 0 on T,

Set Om = dist(xm, 082) as before and one needs to consider the same three

cases: case 1. 5™ — 0,

case 2. —mﬁv€ (0,00),

case 3. § — 00.

In all three cases we get the same limiting equations and hence we get

the same desired contradictions. O
Corollary 1. Suppose a satisfies (Al) and 1 < p < N+2 Suppose Uy, is a
sequence of smooth positive solutions of (Q)x,, - Then there is some C' > 0

(independent of m) such that

/ ub de < C.
Q

Proof. This follows directly from Lemma 3 and Proposition 2.

We now prove our main results; Theorem 1 and 2.

Proof of Theorem 1. Let u,, > 0 denote a smooth solution of —Au,, +
Ama@ - Vi, = ub, in Q with u,, = 0 on 9Q. We first obtain a LP*! bound
on Upy,. Let ¢ := 2* and multiply the equation by u,, and integrate to see
Cnllumllis < [Vuml3: = HumHLpJr1 where the first inequality is coming
from the critical Sobolev imbedding Cn||¢[|3, < [[V¢||2, for all ¢ € HJ ().
Let 0 < 6 < 1 be such that

r 0 1-0

p+1l p q

and by LP interpolation we have

|l L1 < ||um||LP”um”Lq )

13



and combining with the previous inequality we obtain

(p+1)(1-6) (p+1)(1-0)
[ um |l pr+r < HumHLPHumHLp+1 < CHUmHLer12 )

where the constant C' is independent of m and is promised by Corollary 1.
Note we get an LPT! bound on wu,, provided W < 1, which holds
exactly when p < %

An iteration. Let t; > % and for k£ > 1 set

; qti — 1
k1= 2

In the end we will take t; = 1 which simplifies some of the computations;
but we are being more general now since a priori its not clear this doesn’t
give a better result.

Suppose tj > % and suppose there is some Cj, such that ||w,||s+26,-1 <
Cy, for all m. Then there is some C}, such that ||, || p+2t,, -1 < Cy for all m.

Proof of the inductive step. If one multiplies (Q)y,, by u2+~! and integrates

by parts (one needs to take a bit of care near OS2 if ¢, < 1) one arrives at

(2tk—1)/ ugﬁkQIVum\zdx:/ufnﬁt’“ldx,
Q Q

and the left hand side can be rewritten as

(2
tk /v (u'*)2dz.

By known results one has ulk € HS(Q) since tj, > 3 (see for instance [9]) and
one can now apply the critical Sobolev inequality to this term and combine
with the above equality to arrive at

2 5 19
(/ u%ngg) " < CNtk/ WLy
Q 2t — 1 Jg

which we can rewrite as

214 Cnt} p2t,—1
”umHLtkq — 2tk H mHLm—th—l-

14



Using the definition of ¢;1 we see that

N 42
2ty CNtk Hu ”p-i-th—l
Lp+2tk+1_1 — 2tk o 1 m Lp+2tk—17

[t
which completes the proof of the inductive step.

We now examine the cobweb diagram for ¢; and, for the time being, we
omit the needed assumption that ¢ > % Ift1 > ’;:; the diagram shows
that ¢ — oco. Noting that when one take t;, = % we have p+ 2t — 1 =p
one might suspect that they can improve on the range of p we have given;

we are unable to make any improvements like this.

If we now return to our case with ¢; = 1 we see that t;, — oo and ¢} > 1

for all £ > 2. Fix % < T < oo and from the above (after a finite number

of iterations) we see uh, is uniformly bounded (in m) in L7 () and we can

apply the result from [5] (see Theorem A above) to see that u,, is bounded
in L*>°.

Now recall from Proposition 1 there is some C > 0 such that supq w;, >
(4 for all m. By a diagonal argument we can now find a subsequence uy,,
and some u € H& N L such that u,, — u in H& and u;,, — v in LT for
all T < oo (after using convergence in L? and interpolation).
By the proof of Proposition 3.1 in [5] we have

C
2
/Q(a(x) -V (z))dr < E7

and hence u,, is approximating a first integral.
We now show that w is nonzero. From (Q)x we have [, |Vup|?dz =

b da. By the critical Sobolev imbedding and using 2 < p 4+ 1 < 2*
Q
we then get

2 p+1 +1
=

. 2 . % 1-B5
Cn </ u?ndx) < / ul iz < </ u?nda:) </ d:v) ,
Q Q Q Q

that implies

Cna < [lumllge--

But recall that wu,, is convergent (or at least some subsequence is) in LT
for all ' < oo. From this we see that we must have Cn o < ||ul/;2« and
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hence u # 0. a

Proof of Theorem 2. We begin by recalling the Hardy-Sobolev inequality:
let © denote a bounded smooth domain in R (with N > 3), 7 € [0,1] and
g such that % = % + +- Then there is some C' = C(£2, 7) such that

I e < CIVClL,  for all ¢ € HY®),

where ¢ is the distance function as before. By changing C' we can replace §
in the inequality with v, where 1) is promised since a satisfies (A2).

Now let u denote a positive smooth solution of (@)) with A > 1. The
following chain of inequalities will give us an estimate on the solution. At
one we will use the Hardy-Sobolev inequality with 7 := 57+ and q := 2(N+1) .
By using the explicit value of ¢ and 7 we have

/ 2+N+1 dr = / u2+p(17§)dq;
Q Q
2

N+

q

</Q {;2} dx>§ (/Q<u”5)<l—§>£zdx>f

< L,

IN

CQ/ ’VU‘de by Hardy-Sobolev inequality
Q
= Cg/up+1dl' from (Q)x.

Q

Note this gives us an estimate provided 2 + Ng—ﬁl > p+ 1 and note this

holds exactly when p < N H

2p
/upHdw > Cg/u2+N+1da?
Q Q

2+
= Cg/(up+1)°‘d:c where o := ¢ > 1
Q

p+1
> CJ'(/Qzﬁ"~'lcla,“)O£7
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by Jensen’s inequality. From this we see we get an LPT! and H} estimate
on u independent of A and one can now perform an iteration as in the case
of (A1) to see u is bounded in L* independently of \. We now proceed as
in the case of (A1) to pass to a limit and to show the limit is nonzero. 0O

3 Appendix

Sketch of a proof of Theorem A. We will use a variant of the De Giorgi
method to sketch a proof. This variant uses an ODE approach but it can
be proven using a De Giorgi iteration or a Moser iteration. Let p > %
and we assume N is large for simplicity of dealing with the exponents. Let
[ € LP(2) be smooth and we assume (for simplicity) that f > 0 in 2. Take
|| fllr = 1 and let u denote a nonnegative solution of —Au + b(x) - Vu = f
in Q with u = 0 on 9Q with b smooth and div(b) < 0 in Q. Let v = p/ and

hence we have 1 < v < v+ 1 < g where ¢ = 2*. For t > 0 set

1 v
g(t) = STx1 Q(u(fﬁ) - 75)++1d$,

where + refers to the positive part of the function. Then note

—g'(t) = /(u —t)]dax.
Q
By LP interopolation we have

0 —0
1w =)l prer < 1w =) l|7 1 (w = )4 1]7°,

where

1 0 1-46

S S B

Rewriting this in terms of ¢ and ¢’ gives

(9() 7 < C(—g' (1) 7 l(u — D)4 ][5,

where C' = C(p). We now use the equation to get the final term involving
the L? norm. Multiplying the equation by (u—t)4 and integrating and using

17



the fact div(b) < 0 we arrive at

Clu=0l < [ V(1) s
< flleell(u = 8)4llzn

= (u=t)¢llz~

= (~g) ®)
where C' is from the critical Sobolev imbedding. Subbing this into the pre-
vious inequality gives

N

(9(1)) 71 < C(—g'(1)7 77,
and this can be written as

g'(t) < —Cg(t)*,
where a = (WHQ)% and note the C' only depends on p and N. Since

D> % (and recall we ar taking N big) this implies that v < % and after
a computation one can see that a € (0,1). Note that if g(¢t) = 0 for some
t > 0 then we have u <t a.e. in ). Lets assume this differential inequality
is satisfied on (0,7"). Then we have

gt <gO)t*—Ccl-a)t, YO<t<T
and this shows that g decays to zero in finite time and also gives us the
estimate that
< 90
~CO(1-a)
note this decay to zero relies on the fact the exponent is strictly less than 1.

So provided we can estimate g(0) independent of f this gives us a uniform
L on u as desired. But note that

g(O)(y +1) = / u() T,

Q

and from (8) we have

Cll(u—t)4ll7e < ll(u— 1)+l

which completes the proof after noting that v+ 1 < g.
O

Data Sets. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.
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